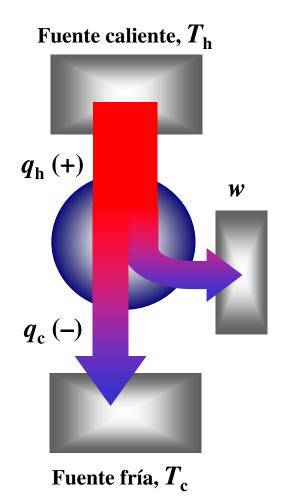
Eficiencia de procesos termodinámicos

El concepto anterior es válido para cualquier proceso o sistema.



Suponga una **máquina** que toma **calor** de una fuente caliente, y parte de la misma la utiliza para producir **trabajo** y el resto la **deshecha** en una fuente más fría.

Se define la **eficiencia** del proceso como:

$$\varepsilon = \frac{\text{trabajo realizado}}{\text{calor absorbido}} = \frac{|w|}{q_h}$$

Pero $w = q_h + q_c$, luego:

$$\mathcal{E}_{\text{rev}} = \frac{q_h + q_c}{q_h} = 1 + \frac{q_c}{q_h} = 1 - \frac{T_c}{T_h} < 1$$

Para máquinas reversibles la eficiencia **solo depende** de las temperaturas de las fuentes y no de cómo están construidas.

La temperatura termodinámica

$$\frac{q_h}{q_c} = -\frac{T_h}{T_c}$$

Esta relación permite definir una escala relativa de temperaturas en función de los calores transferidos entre las fuentes caliente y fría. Si se considera la condición del **punto triple del agua**, $T_{\rm tr}$ = 273.16 K, luego la temperatura T queda definida como:

$$T = 273.16 \text{ K} \times \frac{|q|}{|q_{tr}|}$$

Suponga una **máquina** que trabaja **reversiblemente** entre las fuentes caliente a T_h y fría a T. Se define una escala de temperaturas en función de la **eficiencia** del proceso como:

$$T = (1 - \varepsilon)T_h = (1 - \varepsilon) \times 273.16 \text{ K}$$

En este caso la temperatura T se obtiene midiendo la eficiencia ϵ de la máquina. Esta es una definición puramente mecánica de la temperatura. Note que cuando $\epsilon=1 \Rightarrow T=0$.

La desigualdad de Clausius

Considere un sistema en contacto **térmico y mecánico** con su medio ambiente a la temperatura T. Cualquier cambio de estado involucra un cambio de entropía en el **sistema** y en el **medio ambiente**. Independientemente si el proceso es reversible o irreversible, se cumplirá:

$$dS + dS_{MA} \ge 0$$
 ó $dS \ge -dS_{MA}$

La **igualdad** se aplica a procesos **reversibles** y la **desigualdad** a los **irreversibles**.

Teniendo en cuenta que para el medio ambiente $dS_{MA} = -dq/T$ donde -dq es el calor que entra al sistema desde el MA, entonces:

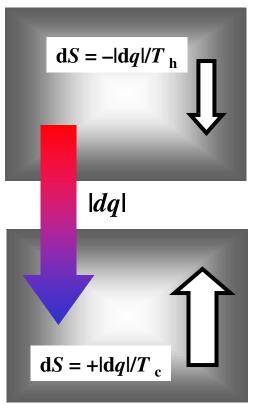
$$dS \ge \frac{dq}{T}$$
 Designaldad de Clausius

Si el sistema está **aislado** del medio ambiente \Rightarrow dq = 0, luego: $dS \ge 0$

Esta relación indica que para un sistema aislado la entropía **no puede disminuir** si ocurre un proceso espontáneo.

Ejemplo: enfriamiento espontáneo

Fuente caliente, $T_{\rm h}$



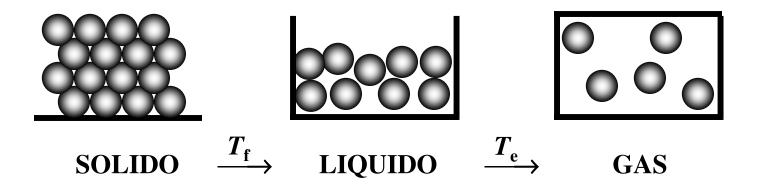
Fuente fría,
$$T_{
m c}$$

$$dS = \frac{|dq|}{T_c} - \frac{|dq|}{T_h} = |dq| \times \left(\frac{1}{T_c} - \frac{1}{T_h}\right)$$

Como
$$T_h > T_c \Rightarrow dS > 0$$

Si
$$T_h = T_c \Rightarrow dS = 0$$
 (equilibrio térmico)

ΔS en transiciones de fase, a T = cte



Aumento de entropía

Disminución de entropía

$$\Delta S_{tr} = \frac{q_{tr}}{T_{tr}}$$
, si el proceso es a $p = \text{cte}$

$$q_{tr} = \Delta H_{tr} \qquad \Rightarrow \qquad \Delta S_{tr} = \frac{\Delta H_{tr}}{T_{tr}}$$

$$Q_{tr} = \Delta H_{tr}$$
 \Rightarrow $\Delta S_{tr} = \frac{\Delta H_{tr}}{T_{tr}}$

ΔS de vaporización, regla de Trouton

Sustancia	T_{vap} (°C)	$\Delta H^{\emptyset}_{\mathrm{vap}}(\mathrm{kJ/mol})$	$\Delta S^{\emptyset}_{\text{vap}}(\text{J/K.mol})$
Benceno CCl ₄ Ciclohexano SH ₂ H ₂ O	80.1 76.7 80.7 -60.4 100	30.8 30.0 30.1 18.7 40.7	87.2 85.8 85.1 87.9 Promedio 85 J/K.mol 109.1

Para líquidos orgánicos donde **no existen interacciones específicas** puede observarse que la entropía de vaporización es aproximadamente constante $\Delta S^{\emptyset}_{\mathrm{vap}}$ = 85 J/K.mol (**regla de Trouton**).

Esto se debe a que las interacciones dominantes a vencer son del tipo **dipolo-dipolo**. Para líquidos **asociados** (con interacciones puente hidrógeno) se requiere mayor energía para separar las moléculas de líquido, el cambio entrópico también es mayor.

Variación de ΔS con la temperatura

$$\Delta S = S(T_f) - S(T_i) = \int_{i}^{f} \frac{dq_{rev}}{T} \Rightarrow \left| S(T_f) = S(T_i) + \int_{i}^{f} \frac{dq_{rev}}{T} \right|$$

En procesos a $p=\text{cte} \Rightarrow \text{d}q_{\text{rev}}=C_{\text{p}}\text{d}T$, luego:

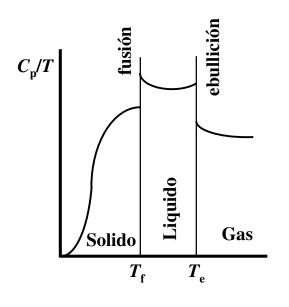
$$S(T_f) = S(T_i) + \int_i^f \frac{C_p dT}{T}$$

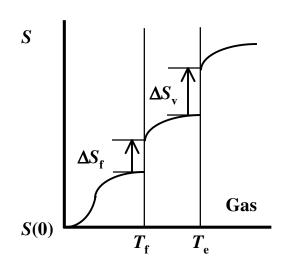
Se debe resolver la integral, conociendo como varía $C_{\rm p}$ con la T. En el caso que $C_{\rm p}$ = cte, la expresión anterior queda:

$$S(T_f) = S(T_i) + C_p \int_i^f \frac{dT}{T} = S(T_i) + C_p \ln \left(\frac{T_f}{T_i}\right)$$

El mismo resultado se obtiene para procesos a $V={\rm cte}$

Variación de ΔS con la temperatura





$$S(T_f) = S(0) + \int_0^{T_f} \frac{C_p(s)dT}{T} + \frac{\Delta H_f}{T_f} + \int_{T_f}^{T_e} \frac{C_p(l)dT}{T} + \frac{\Delta H_v}{T_v} + \int_{T_e}^{T} \frac{C_p(g)dT}{T}$$

La 3^{ra} Ley de la Termodinámica

El **cambio de entropía** producido en cualquier transformación química o física se aproxima a **cero cuando** $T \rightarrow 0$. (**Teorema del calor de Nernst**).

Esto se relaciona con el hecho que a T=0 no hay energía térmica en la red del sólido que produzca desorden molecular.

Ejemplo: Transición de fases entre las formas alotrópicas sólidas del azufre

$$β$$
 (ortorómbico) $\rightarrow α$ (monoclínico) $ΔH_{tr}^{369 \text{ K}} = -402 \text{ J/mol}$

$$\Delta S_{tr}^{369 \text{ K}} = S(\alpha) - S(\beta) = -402/369 = -1.09 \text{ J/K mol}$$

Teniendo en cuenta la variación de *S* con *T*, podemos escribir:

$$S(\alpha, 369) = S(\alpha, 0) + C_p \ln 369 = S(\alpha, 0) + 37 \text{ J/K mol}$$

 $S(\beta, 369) = S(\beta, 0) + C_p \ln 369 = S(\beta, 0) + 38 \text{ J/K mol}$

$$\Delta S_{\text{tr}}^{369 \text{ K}} = S(\alpha) - S(\beta) = -1.0 \text{ J/K mol} \implies S(\alpha, 0) - S(\beta, 0) \cong 0$$

La 3^{ra} Ley de la Termodinámica

Si la entropía de cualquier elemento en su forma mas estable se la considera cero, luego cualquier sustancia tiene entropía positiva a cualquier temperatura y además $S \rightarrow 0$ cuando $T \rightarrow 0$.

Esto permite definir entropías estándares S^{\emptyset} (1 bar) para elementos y compuestos:

	Sø (J/K mol)	
Grafito	5.7	<u> </u>
Sacarosa	360	valores a 298 K
Agua (l)	69.9	J
Metano	186.3	

Para una reacción cualquiera puede calcularse el $\Delta S_{
m r}^{\ \it g}$ como:

$$\Delta S_r^{\Theta} = \sum_{\text{Productos}} V S_m^{\Theta} - \sum_{\text{Reactivos}} V S_m^{\Theta}$$

Energías de Helmholtz y Gibbs

Considere la desigualdad de Clausius para un sistema en equilibrio térmico con su medio ambiente (T = cte):

$$dS - \frac{dq}{T} \ge 0$$

Si el proceso es a V = cterespectivamente:

$$dS_V - \frac{dU}{T} \ge 0$$
 y $dS_p - \frac{dH}{T} \ge 0$

$$dS_p - \frac{dH}{T} \ge 0$$

Estas desigualdades están expresadas solo por variables de estado, y pueden reescribirse como:

$$dU - TdS \le 0$$
 y $dH - TdS \le 0$

Teniendo en cuenta las ecuaciones anteriores se definen las siguientes funciones de estado:

$$A = U - TS$$
 y $G = H - TS$

A = energía de Helmholtz

G = energía de Gibbs

Energías de Helmholtz y Gibbs

Luego para procesos a T = cte obtenemos:

$$dA = dU - TdS$$

$$dA = dU - TdS$$
 y $dG = dH - TdS$

Recordando que:

$$dU - TdS \le 0$$

$$y dH - TdS \le 0$$

obtenemos:

$$dA_{T,V} \leq 0$$

$$dG_{T,p} \le 0$$

Estas desigualdades son los criterios de espontaneidad más importantes en procesos termodinámicos.