FUNDAMENTOS Y APLICACIONES DE LA ESPECTROSCOPIA RAMAN EN SISTEMAS ELECTROQUIMICOS

Gabriela I. Lacconi

INFIQC, Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba.Córdoba, Argentina.

Espectroscopía Raman

-Fundamentos, ventajas y aplicaciones

- Espectroscopía SERS
 - Fundamentos y características experimentales
 - Mecanismos de exaltación SERS
 - Recientes desarrollos y aplicaciones
- Caracterización de la electrodeposición metálica
 - Electrodeposición de Ag en presencia de TU
 - Electrodeposición de Cu en presencia de APC
- Proyección futura de SERS con nanoestructuras

Identificaciónquímicayestructural de moléculas e ionesadsorbidos sobre superficies.

Investigación de reacciones químicas y electroquímicas en interfaces.

Huella digital de especies adsorbidas y de su entorno local **ELECTROQUIMIC**

⇒Efecto Raman

Interacción de la molécula con el fotón incidente en un evento de dispersión inelástica.

desplazamiento Raman: energía involucrada en los cambios de estados vibracionales de las moléculas (Ev) = CAMBIO EN LA POLARIZABILIDAD MOLECULAR.

 $E_v = E_i - E_s$

Polarizabilidad α: Valor del momento dipolar inducido dividido por la fuerza del campo eléctrico que causa el dipolo inducido. "Efecto cuántico"

 $\mathbf{P} = \boldsymbol{\alpha} \mathbf{E}$

Teoría electromagnética clásica:

 $\overline{\mathbf{E}} = \mathbf{E}_0 \cos 2\Pi \mathbf{v} \mathbf{t}$

además:

$$\alpha = \alpha_0 + \sum \left(\frac{\delta \alpha_n}{\delta r}\right) r_n \cos 2\pi v_n t$$

equilibrio + mov. rotacionales/vibracionales

r_n : máximo desplazamiento de los átomos involucrados

$$P = E_0 \alpha_0 \cos 2\pi v t + \frac{1}{2} E_0 \sum \left(\frac{\delta \alpha_n}{\delta r} \right) r_n \left\{ \cos 2\pi (v - v_n) t + \cos 2\pi (v + v_n) t \right\}$$

Rayleigh $\neq 0$ Stokes Anti-Stokes

Espectro Raman => Representación de la intensidad Raman vs el desplazamiento Raman

> *Modos vibracionales* **Activos en IR** => la vibración debe causar un cambio en el <u>momento dipolar</u> <u>permanente</u> de la molécula

Activos en Raman => la *polarizabilidad* de la molécula debe cambiar durante la vibración

Ventajas de la espectroscopía Raman:

- Preparación de la muestra
- In-situ en tiempo real
- No destructivo ni intrusivo
- Soluciones acuosas
- Ventanas de vidrio y fibras
- Muestras sólidas, líquidas y gases, transparentes u opacas y de cualquier tamaño
- Espectros con buena resolución
- Intervalo espectral accesible amplio
- Altas y bajas temperaturas

Desventajas:

Baja sección eficaz Raman

Aplicaciones de la espectroscopía Raman

Compuestos Inorgánicos: enlaces metal-ligandos: 100 to 700 cm⁻¹ (composición e identificación de distintas fases en minerales, semiconductores).

Compuestos Orgánicos: grupos funcionales, sensible a la geometría y ambiente (monitoreo de reacciones, polímeros, colorantes).

Moléculas biológicas: muestras pequeñas, mínima sensibilidad hacia la interferencia con el agua, detalle espectral, sensibilidad conformacional y ambiental (proteinas, composición intra-celular).

Análisis cuantitativo: no es fácil

SERS (Surface Enhancement of Raman Scattering)

Fleischmann, Hendra y Mc. Quillan¹ (1974) SERS de Piridina/Ag magnif. I_{SERS} 10⁶

Características experimentales de SERS²⁻⁷

- Diferentes moléculas adsorbidas sobre distintas superficies
- Intensificaciones $10^6 \rightarrow Ag$, Cu, Au, rugosidad submicroscópica
- Intensificaciones > $10^6 \rightarrow$ superficies con rugosidad a escala atómica
- Interfases S/L, S/G y S/S. Moléculas adsorbidas en la primer capa, efecto de largo alcance (10 nm)
- Nuevos modos vibracionales debido a la presencia de la superficie
- Perfil de excitación (I vs v) \neq f(v)⁴

• I(SERS) y frecuencias de bandas vibracionales dependen del potencial del electrodo, metal, tipo de superficie, E incidente, etc.

- 3- J.A. Creighton, Spectroscopy of Surfaces, J. Wiley & Sons, Chichester (1988)
- 4- R.L. Birke, J.R. Lombardi, Spectroelectrochemistry, Theory and Practice, Plenum Press (1988)
- 5- B. Pettinger, Adsorption of Molecules at Metal Electrodes, VCH, New York (1992)
- 6-M.J. Weaver, S. Zou, H.Y. Chan, Anal. Chem. 72, 38A (2000)
- 7- C. Della Védova, G.I. Lacconi, *Electroquímica y Electrocatálisis, Capítulo 15, Espectroscopía Raman*, e-libro net, Buenos Aires (2003)

²⁻ R.K. Chang, T.E. Furtak, Surface Enhanced Raman Scattering, Plenum Press, New York (1982).

Mecanismos de exaltación SERS

Efecto electromagnético (EM) Rugosidad a nanoescala (10-100 nm) Interacción entre la molécula adsorbida y el campo electromagnético de los plasmones superficiales

Efecto químico (CT)

Rugosidad a escala atómica (adátomos, escalones, esquinas o vacancias)

Asociado con transiciones electrónicas entre el adsorbato y los estados superficiales del metal (efectos mecánico-cuánticos)

Formación de enlaces químicos/complejos de transferencia de carga

Recientes desarrollos y aplicaciones

sustratos

técnicas

Ni, Co, Fe, Pt, Pd, Rh, Ru, semiconductores, polímeros, películas orgánicas, crist. líq.

Coloides, nanopartículas (80-100 nm), nanofibras sobre capas autoensambladas. Microscopía Raman confocal. Nuevos detectores CCD (imágenes) Fibras ópticas (alta sensibilidad). ATR-Raman. SNOM (res. espacial ~ 20 nm). SERS de una molécula.

teoría

Cálculos computacionales químicocuánticos ab-initio. Nuevas teorías del efecto SERS.

Caracterización de la electrodeposición metálica

SERS in-situ

Participación de aditivos en el mecanismo

Agentes abrillantadores y niveladores Moléculas orgánicas

• Modifican la cinética de nucleación y crecimiento de los cristales metálicos

• Modifican las propiedades y morfología de los depósitos metálicos

Naturaleza de la interacción entre moléculas y la superficie del metal

Mecanismo de acción de aditivos

Espectroscopía SERS

SERS de TU durante la electrodeposición de Ag

Δν (466 cm⁻¹) Δν (708 cm⁻¹) Δν (1090 cm⁻¹) adsorción perpendicular a la sup. vía átomo de S disminución del orden de enlace C=S modificación de enlaces C=S y C-N

930 cm⁻¹ 1378 cm⁻¹ 1615 cm⁻¹ 610 cm⁻¹ coadsorción de CIO₄ a través de los grupos –NH₂

aumento de la baja polarizabilidad por la adsorción indicador de la orientación de la mol. adsorbida *Imagen del dipolo \perp a la sup. dentro del metal => $\alpha^{\uparrow\uparrow}$ cuando TU se encuentra acostada paralela a la superficie

SERS de TU durante la deposición de Ag/C

- La morfología de los depósitos depende de la [TU].

 Aunque la [TU] y E determinen que diferentes especies pueden ser reducidas, SERS -> TU y ClO₄⁻

Dependencia ISERS con el tiempo de deposición

Deposición de Cu en presencia de ácidos piridin-carboxílicos

Raman AN ⁺	Raman AN	Raman AN	Asignaciones
GIII	cm	cm	
	-	849	δ(COO)
1028	1037	1037	Resp. anillo
	1391	1392	$v_{s}(COO)$
-	_	1589	Vib. en el plano, 8a
			anillo no protonado
1638	1638		Vib. en el plano, 8a
			anillo protonado
1720	_	_	v _s (C=O)

3,9 > pH > 5,1

1700 cm⁻ no AN⁺ 849 cm⁻¹ => (AN⁻) 1035 cm⁻¹ => (AN⁻) 1384 cm⁻¹ => (AN⁻) $\Delta v \rightarrow \text{orient.via } e^{-(\pi)} COO^{-1}$ 1584 cm⁻¹ => (AN⁻) 220 cm⁻¹ => v(Cu-N) \rightarrow interacc. Cu-N

•1634 cm⁻¹ => zwiterion (AN)

•Bandas del anion AN⁻

• 290 cm⁻¹ => $v(Cu-O) \rightarrow zwiterion$ (AN) ads. por el O

•1406 cm⁻¹ => $\Delta v \rightarrow zwiterion$, interacción Cu-COO⁻ vía e- O: Orient. $\perp o \angle$ idem ac. benzoico

800 nm

0 100 200 300 400 600 600 700

 $Na_2SO_4 + CuSO_4$ $E_{dep} = -0.2 V t_{dep.} = 5 min.$

 $Na_2SO_4 + CuSO_4 + AN$ $E_{dep} = -0,2 V t_{dep.} = 5 min.$

SERS Electrodeposición metálica

• diagnóstico in-situ de la adsorción de aditivos,

- diferencias en la morfología superficial (micro-estructura de los depósitos),
- identidad química específica de las especies adsorbidas (moléculas, aniones, iones complejos),
- cambios en la estructura y configuración de las moléculas de aditivos durante el proceso,
- orientación de las especies adsorbidas,
- aspecto molecular del mecanismo de acción de los aditivos

8- K. Kneipp. Y.Wang, H. Kneipp, L.T. Perelman, R.R. Dasari, M. Feld, *Phys. Rev. Lett.*, 1997, 78, 1667.
9- S. Nie and S. R. Emory, *Science*, 1997, 275, 1102

Espectros Raman de una molécula de Rodamina 6G/partículas de Ag

• magnificación total estimada 10¹⁴-10¹⁵

señal SERS con solo 34 moléculas por partícula

Optima excitación dependiente del tamaño de la partícula

<u>Agradecimientos:</u>

- Grupo de electroquímica INIFTA, La Plata. Prof. Dr. A. J. Arvía
- Grupo de investigación CEQUINOR, UNLP. Prof. Dr. P. Aymonino
- Grupo de espectroscopía, USP, San Pablo, Brasil. Prof. Dr. O. Sala
- Grupo de investigación, Inst. Physikalische Chemie, FU Berlin + TU Dresden, Alemania. Prof. Dr. W. Plieth

Fundación Alexander von Humboldt Fundación Volkswagen Fundación Antorchas DAAD CONICET SECYT (UNC) FONCYT